Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Les sujets
Type de document
Gamme d'année
1.
European Journal of Human Genetics ; 31(Supplement 1):706-707, 2023.
Article Dans Anglais | EMBASE | ID: covidwho-20232856

Résumé

Background/Objectives: We previously demonstrated that carrying a single pathogenic CFTR allele increases the risk for COVID-19 severity and mortality rate. We now aim to clarify the role of several uncharacterized rare alleles, including complex (cis) alleles, and in trans combinations. Method(s): LASSO logistic regression was used for the association of sets of variants, stratified by MAF, with severity. Immortalized cystic fibrosis bronchial epithelial cell lines and Fischer Rat Thyroid cells were transfected by plasmid carrying specific CFTR mutations. YFP-based assays were used to measure CFTR activity. Result(s): Here we functionally demonstrate that the rare (MAF=0.007) complex G576V/R668C allelemitigates the disease by a gain of function mechanism. Several novel CFTR ultra-rare (MAF <0.001) alleles were proved to have a reduced function;they are associated with disease severity either alone (single or complex alleles) or with another hypomorphic allele in the second chromosome, with a global reduction of CFTR activity between 40 to 72%. Conclusion(s): CFTR is a bidirectional modulator of COVID-19 outcome. At-risk subjects do not have open cystic fibrosis before viral infection and therefore are not easily recognisable in the general population unless a genetic analysis is performed. As the CFTR activity is partially retained, CFTR potentiator drugs could be an option as add-on therapy for at-risk patients.

3.
Topics in Antiviral Medicine ; 30(1 SUPPL):63-64, 2022.
Article Dans Anglais | EMBASE | ID: covidwho-1880680

Résumé

Background: Humoral innate immunity consists of a limited, but diverse, set of humoral fluid phase pattern recognition molecules (PRMs) that represent a first line of resistance against microbial invaders by promoting pathogen disposal by phagocytosis, complement activation and inflammation. These factors encompass complement, ficolin, collectin and pentraxin family of proteins. Methods: We have analyzed the activity of PRMs for their potential capacity of inhibiting SARS-CoV-2 entry and replication into epithelial cells by a microneutralization assay based on a lentiviral particles pseudotyped with the SARS-CoV-2 spike protein in HEK293T cells overexpressing the angiotensin converting enzyme 2 (ACE2). Either SARS-CoV-2 or target cells were incubated with Mannose Binding Lectin (MBL, concentration range: 1-50 μ g/ml) to further characterize its anti-viral activity for 1 h prior to infection in both human Calu-3 cells and air-liquid interface cultures of human bronchial epithelial cells (HBEC). Binding experiments were carried out with SARS-CoV-2 Spike protein and recombinant MBL to further investigate its antiviral action. Results: Among 12 PRMs tested, only MBL inhibited viral entry in the pseudotyped neutralization assay. Furthermore, MBL protein inhibited SARS-CoV-2 viral replication in Calu-3 and HBEC by ca. one log10 at the top concentration (10 μ g/ml and 50 μ g/ml, respectively). MBL antiviral activity was confirmed also against alpha, beta and gamma SARS-CoV-2 variants of concern. Binding experiments showed that MBL specifically interacts with the trimeric form of SARS-CoV-2 spike. Conclusion: MBL binds to the Spike protein in its active trimeric conformation leading to the inhibition of SARS-CoV-2 infection and replication in vitro. These results suggest that MBL possesses an antiviral activity against SARS-CoV-2 that could bear therapeutic potential.

SÉLECTION CITATIONS
Détails de la recherche